Vulnerability Scan Result
IP address | 216.58.212.206 |
Country | US |
AS number | AS15169 |
Net name | Google LLC |
80/tcp | http | gws |
443/tcp | https | gws |
Software / Version | Category |
---|---|
Google Hosted Libraries | CDN |
Google Web Server | Web servers |
Closure Library | JavaScript libraries |
Google Font API | Font scripts |
HTTP/3 | Miscellaneous |
HSTS | Security |
Web Application Vulnerabilities
Evidence
URL | Cookie Name | Evidence |
---|---|---|
https://www.google.com/ | AEC | Set-Cookie: .google.com |
Vulnerability description
We found that the target application sets cookies with a domain scope that is too broad. Specifically, cookies intended for use within a particular application are configured in such a way that they can be accessed by multiple subdomains of the same primary domain.
Risk description
The risk is that a cookie set for example.com may be sent along with the requests sent to dev.example.com, calendar.example.com, hostedsite.example.com. Potentially risky websites under your main domain may access those cookies and use the victim session from the main site.
Recommendation
The `Domain` attribute should be set to the origin host to limit the scope to that particular server. For example if the application resides on server app.mysite.com, then it should be set to `Domain=app.mysite.com`
Classification
CWE | CWE-614 |
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
URL | Cookie Name | Evidence |
---|---|---|
https://www.google.com/ | SOCS | The server responded with Set-Cookie header(s) that does not specify the HttpOnly flag: Set-Cookie: SOCS=CAAaBgiAjca8Bg |
Vulnerability description
We found that a cookie has been set without the <code>HttpOnly</code> flag, which means it can be accessed by potentially malicious JavaScript code running inside the web page. The root cause for this usually revolves around misconfigurations in the code or server settings.
Risk description
The risk is that an attacker who injects malicious JavaScript code on the page (e.g. by using an XSS attack) can access the cookie and can send it to another site. In case of a session cookie, this could lead to session hijacking.
Recommendation
Ensure that the HttpOnly flag is set for all cookies.
Classification
CWE | CWE-1004 |
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
URL | Evidence |
---|---|
https://www.google.com/ | Response headers do not include the X-Content-Type-Options HTTP security header |
Vulnerability description
We noticed that the target application's server responses lack the <code>X-Content-Type-Options</code> header. This header is particularly important for preventing Internet Explorer from reinterpreting the content of a web page (MIME-sniffing) and thus overriding the value of the Content-Type header.
Risk description
The risk is that lack of this header could make possible attacks such as Cross-Site Scripting or phishing in Internet Explorer browsers.
Recommendation
We recommend setting the X-Content-Type-Options header such as `X-Content-Type-Options: nosniff`.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
URL | Evidence |
---|---|
https://www.google.com/ | Response does not include the HTTP Content-Security-Policy security header or meta tag |
Vulnerability description
We noticed that the target application lacks the Content-Security-Policy (CSP) header in its HTTP responses. The CSP header is a security measure that instructs web browsers to enforce specific security rules, effectively preventing the exploitation of Cross-Site Scripting (XSS) vulnerabilities.
Risk description
The risk is that if the target application is vulnerable to XSS, lack of this header makes it easily exploitable by attackers.
Recommendation
Configure the Content-Security-Header to be sent with each HTTP response in order to apply the specific policies needed by the application.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
URL | Evidence |
---|---|
https://www.google.com/ | Response headers do not include the Referrer-Policy HTTP security header as well as the <meta> tag with name 'referrer' is not present in the response. |
Vulnerability description
We noticed that the target application's server responses lack the <code>Referrer-Policy</code> HTTP header, which controls how much referrer information the browser will send with each request originated from the current web application.
Risk description
The risk is that if a user visits a web page (e.g. "http://example.com/pricing/") and clicks on a link from that page going to e.g. "https://www.google.com", the browser will send to Google the full originating URL in the `Referer` header, assuming the Referrer-Policy header is not set. The originating URL could be considered sensitive information and it could be used for user tracking.
Recommendation
The Referrer-Policy header should be configured on the server side to avoid user tracking and inadvertent information leakage. The value `no-referrer` of this header instructs the browser to omit the Referer header entirely.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
URL | Evidence |
---|---|
https://www.google.com/ | Response headers do not include the HTTP Strict-Transport-Security header |
Vulnerability description
We noticed that the target application lacks the HTTP Strict-Transport-Security header in its responses. This security header is crucial as it instructs browsers to only establish secure (HTTPS) connections with the web server and reject any HTTP connections.
Risk description
The risk is that lack of this header permits an attacker to force a victim user to initiate a clear-text HTTP connection to the server, thus opening the possibility to eavesdrop on the network traffic and extract sensitive information (e.g. session cookies).
Recommendation
The Strict-Transport-Security HTTP header should be sent with each HTTPS response. The syntax is as follows: `Strict-Transport-Security: max-age=<seconds>[; includeSubDomains]` The parameter `max-age` gives the time frame for requirement of HTTPS in seconds and should be chosen quite high, e.g. several months. A value below 7776000 is considered as too low by this scanner check. The flag `includeSubDomains` defines that the policy applies also for sub domains of the sender of the response.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
URL | Evidence |
---|---|
https://www.google.com/imghp | Response headers include the HTTP Content-Security-Policy security header with the following security issues:`script-src: ''unsafe-inline'' allows the execution of unsafe in-page scripts and event handlers. default-src: The default-src directive should be set as a fall-back when other restrictions have not been specified. report-uri: report-uri is deprecated in CSP3. Please use the report-to directive instead. script-src: Nonces should only use the base64 charset.` |
Vulnerability description
We noticed that the Content-Security-Policy (CSP) header configured for the web application includes unsafe directives. The CSP header activates a protection mechanism implemented in web browsers which prevents exploitation of Cross-Site Scripting vulnerabilities (XSS) by restricting the sources from which content can be loaded or executed.
Risk description
For example, if the unsafe-inline directive is present in the CSP header, the execution of inline scripts and event handlers is allowed. This can be exploited by an attacker to execute arbitrary JavaScript code in the context of the vulnerable application.
Recommendation
Remove the unsafe values from the directives, adopt nonces or hashes for safer inclusion of inline scripts if they are needed, and explicitly define the sources from which scripts, styles, images or other resources can be loaded.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
Software / Version | Category |
---|---|
Google Hosted Libraries | CDN |
Google Web Server | Web servers |
Closure Library | JavaScript libraries |
Google Font API | Font scripts |
HTTP/3 | Miscellaneous |
HSTS | Security |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.
Classification
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
Vulnerability description
We found the robots.txt on the target server. This file instructs web crawlers what URLs and endpoints of the web application they can visit and crawl. Website administrators often misuse this file while attempting to hide some web pages from the users.
Risk description
There is no particular security risk in having a robots.txt file. However, it's important to note that adding endpoints in it should not be considered a security measure, as this file can be directly accessed and read by anyone.
Recommendation
We recommend you to manually review the entries from robots.txt and remove the ones which lead to sensitive locations in the website (ex. administration panels, configuration files, etc).
Classification
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Vulnerability description
Website is accessible.
Infrastructure Vulnerabilities
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
google.com | SPF | Sender Policy Framework | "v=spf1 include:_spf.google.com ~all" |
Vulnerability description
We found that the Sender Policy Framework (SPF) record for the domain is configured with ~all (soft fail), which indicates that emails from unauthorized IP addresses are not explicitly denied. Instead, the recipient mail server is instructed to treat these messages with suspicion but may still accept them. This configuration may not provide enough protection against email spoofing and unauthorized email delivery, leaving the domain more vulnerable to impersonation attempts.
Recommendation
We recommend changing the SPF record's ~all (soft fail) directive to -all (hard fail). The -all setting tells recipient mail servers to reject emails from any IP addresses not listed in the SPF record, providing stronger protection against email spoofing. Ensure that all legitimate IP addresses and services that send emails on behalf of your domain are properly included in the SPF record before implementing this change.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
_dmarc.google.com | TXT | Text record | "v=DMARC1; p=reject; rua=mailto:mailauth-reports@google.com" |
Vulnerability description
We found that the DMARC record for the domain is not configured with sp policy, meaning that no policy is enforced for subdomains. When a DMARC record does not include a subdomain policy (sp directive), subdomains are not explicitly covered by the main domain's DMARC policy. This means that emails sent from subdomains (e.g., sub.example.com) may not be subject to the same DMARC enforcement as the main domain (example.com). As a result, attackers could potentially spoof emails from subdomains without being blocked or flagged, even if the main domain has a strict DMARC policy.
Recommendation
To mitigate the risk, we recommend configuring the DMARC record with a subdomain policy by adding the sp=reject or sp=quarantine directive. This will extend DMARC enforcement to all subdomains, preventing spoofing attempts and maintaining consistent security across both the main domain and its subdomains.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
_dmarc.google.com | TXT | Text record | "v=DMARC1; p=reject; rua=mailto:mailauth-reports@google.com" |
Vulnerability description
We found that the DMARC record for the domain is not configured with ruf tag. A missing ruf (forensic reporting) tag in a DMARC record indicates that the domain owner has not enabled the collection of detailed failure reports. Forensic reports provide valuable insights into specific instances where emails fail DMARC authentication. Without the ruf tag, the domain administrator loses the ability to receive and analyze these reports, making it difficult to investigate individual email failures or identify targeted phishing or spoofing attacks that may be exploiting weaknesses in the email authentication setup.
Recommendation
We recommend configuring the ruf tag in the DMARC record. This tag specifies where forensic reports should be sent, providing the domain owner with detailed data on DMARC validation failures. Forensic reports allow administrators to analyze why certain emails failed authentication, making it easier to fine-tune DMARC policies or address potential vulnerabilities. Ensure that the ruf email address belongs to a secure and trusted location capable of handling sensitive email data.
Vulnerability description
We found that no DKIM record was configured. When a DKIM (DomainKeys Identified Mail) record is not present for a domain, it means that outgoing emails from that domain are not cryptographically signed. DKIM is a critical component of email authentication, allowing recipients to verify that an email was genuinely sent from an authorized server and that the message has not been altered in transit. The absence of a DKIM record leaves the domain vulnerable to email spoofing and phishing attacks, as attackers can send fraudulent emails that appear to originate from the domain without any cryptographic verification.
Recommendation
We recommend implementing DKIM for your domain to enhance email security and protect your brand from email-based attacks. Generate a DKIM key pair (public and private keys), publish the public key in the DNS under the appropriate selector, and configure your email servers to sign outgoing messages using the private key. Ensure that the DKIM key length is at least 1024 bits to prevent cryptographic attacks. Regularly monitor DKIM signatures to ensure the system is functioning correctly and update keys periodically to maintain security.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
google.com | A | IPv4 address | 142.250.178.14 |
google.com | NS | Name server | ns2.google.com |
google.com | NS | Name server | ns3.google.com |
google.com | NS | Name server | ns4.google.com |
google.com | NS | Name server | ns1.google.com |
google.com | MX | Mail server | 10 smtp.google.com |
google.com | SOA | Start of Authority | ns1.google.com. dns-admin.google.com. 718306161 900 900 1800 60 |
google.com | AAAA | IPv6 address | 2a00:1450:4009:822::200e |
google.com | TXT | Text record | "globalsign-smime-dv=CDYX+XFHUw2wml6/Gb8+59BsH31KzUr6c1l2BPvqKX8=" |
google.com | TXT | Text record | "docusign=1b0a6754-49b1-4db5-8540-d2c12664b289" |
google.com | TXT | Text record | "google-site-verification=TV9-DBe4R80X4v0M4U_bd_J9cpOJM0nikft0jAgjmsQ" |
google.com | TXT | Text record | "cisco-ci-domain-verification=479146de172eb01ddee38b1a455ab9e8bb51542ddd7f1fa298557dfa7b22d963" |
google.com | TXT | Text record | "docusign=05958488-4752-4ef2-95eb-aa7ba8a3bd0e" |
google.com | TXT | Text record | "MS=E4A68B9AB2BB9670BCE15412F62916164C0B20BB" |
google.com | TXT | Text record | "google-site-verification=wD8N7i1JTNTkezJ49swvWW48f8_9xveREV4oB-0Hf5o" |
google.com | TXT | Text record | "facebook-domain-verification=22rm551cu4k0ab0bxsw536tlds4h95" |
google.com | TXT | Text record | "apple-domain-verification=30afIBcvSuDV2PLX" |
google.com | TXT | Text record | "onetrust-domain-verification=de01ed21f2fa4d8781cbc3ffb89cf4ef" |
google.com | TXT | Text record | "google-site-verification=4ibFUgB-wXLQ_S7vsXVomSTVamuOXBiVAzpR5IZ87D0" |
google.com | SPF | Sender Policy Framework | "v=spf1 include:_spf.google.com ~all" |
google.com | CAA | Certificate Authority Authorization | 0 issue "pki.goog" |
_dmarc.google.com | TXT | Text record | "v=DMARC1; p=reject; rua=mailto:mailauth-reports@google.com" |
Recommendation
We recommend reviewing all DNS records associated with the domain and identifying and removing unused or obsolete records.
Vulnerability description
OS detection couldn't determine the operating system.
Evidence
Software / Version | Category |
---|---|
Google Web Server | Web servers |
Google Hosted Libraries | CDN |
Google Font API | Font scripts |
HSTS | Security |
HTTP/3 | Miscellaneous |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.