Vulnerability Scan Result
IP address | 213.239.221.71 |
Country | DE |
AS number | AS24940 |
Net name | Hetzner Online GMBH |
80/tcp | http | nginx |
443/tcp | tcpwrapped |
Software / Version | Category |
---|---|
Babel | Miscellaneous |
Backbone.js 1.1.1 | JavaScript frameworks |
Font Awesome 4.6.3 | Font scripts |
core-js 2.6.12 | JavaScript libraries |
jQuery 1.11.0 | JavaScript libraries |
Marionette.js 2.3.0 | JavaScript frameworks |
Nginx | Web servers, Reverse proxies |
Open Graph | Miscellaneous |
OpenResty | Web servers |
PhotoSwipe | Photo galleries, JavaScript libraries |
Underscore.js | JavaScript libraries |
BaseKit | Page builders |
reCAPTCHA | Security |
Lodash 1.6.0 | JavaScript libraries |
Web Application Vulnerabilities
Evidence
Risk Level | CVSS | CVE | Summary | Affected software |
---|---|---|---|---|
4.3 | CVE-2015-9251 | jQuery before 3.0.0 is vulnerable to Cross-site Scripting (XSS) attacks when a cross-domain Ajax request is performed without the dataType option, causing text/javascript responses to be executed. | jquery 1.11.0 | |
4.3 | CVE-2019-11358 | jQuery before 3.4.0, as used in Drupal, Backdrop CMS, and other products, mishandles jQuery.extend(true, {}, ...) because of Object.prototype pollution. If an unsanitized source object contained an enumerable __proto__ property, it could extend the native Object.prototype. | jquery 1.11.0 | |
4.3 | CVE-2020-11023 | In jQuery versions greater than or equal to 1.0.3 and before 3.5.0, passing HTML containing <option> elements from untrusted sources - even after sanitizing it - to one of jQuery's DOM manipulation methods (i.e. .html(), .append(), and others) may execute untrusted code. This problem is patched in jQuery 3.5.0. | jquery 1.11.0 | |
4.3 | CVE-2020-11022 | In jQuery versions greater than or equal to 1.2 and before 3.5.0, passing HTML from untrusted sources - even after sanitizing it - to one of jQuery's DOM manipulation methods (i.e. .html(), .append(), and others) may execute untrusted code. This problem is patched in jQuery 3.5.0. | jquery 1.11.0 |
Vulnerability description
We noticed known vulnerabilities in the target application based on the server responses. They are usually related to outdated systems and expose the affected applications to the risk of unauthorized access to confidential data and possibly denial of service attacks. Depending on the system distribution the affected software can be patched but displays the same version, requiring manual checking.
Recommendation
In order to eliminate the risk of these vulnerabilities, we recommend you check the installed software version and upgrade to the latest version.
Classification
CWE | CWE-1026 |
OWASP Top 10 - 2017 | A9 - Using Components with Known Vulnerabilities |
OWASP Top 10 - 2021 | A6 - Vulnerable and Outdated Components |
Evidence
URL | Evidence |
---|---|
https://www.wanderwunderwelt.ch/ | Response headers do not include the HTTP Strict-Transport-Security header |
Vulnerability description
We noticed that the target application lacks the HTTP Strict-Transport-Security header in its responses. This security header is crucial as it instructs browsers to only establish secure (HTTPS) connections with the web server and reject any HTTP connections.
Recommendation
The Strict-Transport-Security HTTP header should be sent with each HTTPS response. The syntax is as follows: `Strict-Transport-Security: max-age=<seconds>[; includeSubDomains]` The parameter `max-age` gives the time frame for requirement of HTTPS in seconds and should be chosen quite high, e.g. several months. A value below 7776000 is considered as too low by this scanner check. The flag `includeSubDomains` defines that the policy applies also for sub domains of the sender of the response.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
URL | Evidence |
---|---|
https://www.wanderwunderwelt.ch/ | Response does not include the HTTP Content-Security-Policy security header or meta tag |
Vulnerability description
We noticed that the target application lacks the Content-Security-Policy (CSP) header in its HTTP responses. The CSP header is a security measure that instructs web browsers to enforce specific security rules, effectively preventing the exploitation of Cross-Site Scripting (XSS) vulnerabilities.
Recommendation
Configure the Content-Security-Header to be sent with each HTTP response in order to apply the specific policies needed by the application.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
URL | Evidence |
---|---|
https://www.wanderwunderwelt.ch/ | Response headers do not include the Referrer-Policy HTTP security header as well as the <meta> tag with name 'referrer' is not present in the response. |
Vulnerability description
We noticed that the target application's server responses lack the <code>Referrer-Policy</code> HTTP header, which controls how much referrer information the browser will send with each request originated from the current web application.
Recommendation
The Referrer-Policy header should be configured on the server side to avoid user tracking and inadvertent information leakage. The value `no-referrer` of this header instructs the browser to omit the Referer header entirely.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
Software / Version | Category |
---|---|
Babel | Miscellaneous |
Backbone.js 1.1.1 | JavaScript frameworks |
Font Awesome 4.6.3 | Font scripts |
core-js 2.6.12 | JavaScript libraries |
jQuery 1.11.0 | JavaScript libraries |
Marionette.js 2.3.0 | JavaScript frameworks |
Nginx | Web servers, Reverse proxies |
Open Graph | Miscellaneous |
OpenResty | Web servers |
PhotoSwipe | Photo galleries, JavaScript libraries |
Underscore.js | JavaScript libraries |
BaseKit | Page builders |
reCAPTCHA | Security |
Lodash 1.6.0 | JavaScript libraries |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.
Classification
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
Vulnerability description
We found the robots.txt on the target server. This file instructs web crawlers what URLs and endpoints of the web application they can visit and crawl. Website administrators often misuse this file while attempting to hide some web pages from the users.
Recommendation
We recommend you to manually review the entries from robots.txt and remove the ones which lead to sensitive locations in the website (ex. administration panels, configuration files, etc).
Classification
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Vulnerability description
Website is accessible.
Vulnerability description
We have noticed that the server is missing the security.txt file, which is considered a good practice for web security. It provides a standardized way for security researchers and the public to report security vulnerabilities or concerns by outlining the preferred method of contact and reporting procedures.
Recommendation
We recommend you to implement the security.txt file according to the standard, in order to allow researchers or users report any security issues they find, improving the defensive mechanisms of your server.
Classification
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Infrastructure Vulnerabilities
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
wanderwunderwelt.ch | SPF | Sender Policy Framework | "v=spf1 a mx ~all" |
Vulnerability description
We found that the Sender Policy Framework (SPF) record for the domain is configured with ~all (soft fail), which indicates that emails from unauthorized IP addresses are not explicitly denied. Instead, the recipient mail server is instructed to treat these messages with suspicion but may still accept them. This configuration may not provide enough protection against email spoofing and unauthorized email delivery, leaving the domain more vulnerable to impersonation attempts.
Recommendation
We recommend changing the SPF record's ~all (soft fail) directive to -all (hard fail). The -all setting tells recipient mail servers to reject emails from any IP addresses not listed in the SPF record, providing stronger protection against email spoofing. Ensure that all legitimate IP addresses and services that send emails on behalf of your domain are properly included in the SPF record before implementing this change.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
_dmarc.wanderwunderwelt.ch | TXT | Text record | "v=DMARC1; p=quarantine;" |
Vulnerability description
We found that the target uses p=quarantine in the DMARC policy. When a DMARC policy is set to p=quarantine, emails that fail DMARC validation are delivered but placed in the recipient’s spam or junk folder. Although it offers some protection, this policy is less strict than p=reject, which blocks such emails entirely.
Recommendation
We recommend considering moving to a stricter policy, such as p=reject, where emails that fail DMARC validation are completely rejected rather than delivered to spam folders. This reduces the risk of users interacting with potentially malicious emails.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
_dmarc.wanderwunderwelt.ch | TXT | Text record | "v=DMARC1; p=quarantine;" |
Vulnerability description
We found that the DMARC record for the domain is not configured with sp policy, meaning that no policy is enforced for subdomains. When a DMARC record does not include a subdomain policy (sp directive), subdomains are not explicitly covered by the main domain's DMARC policy. This means that emails sent from subdomains (e.g., sub.example.com) may not be subject to the same DMARC enforcement as the main domain (example.com). As a result, attackers could potentially spoof emails from subdomains without being blocked or flagged, even if the main domain has a strict DMARC policy.
Recommendation
To mitigate the risk, we recommend configuring the DMARC record with a subdomain policy by adding the sp=reject or sp=quarantine directive. This will extend DMARC enforcement to all subdomains, preventing spoofing attempts and maintaining consistent security across both the main domain and its subdomains.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
_dmarc.wanderwunderwelt.ch | TXT | Text record | "v=DMARC1; p=quarantine;" |
Vulnerability description
We found that the DMARC record for the domain is not configured with rua tag. When a DMARC record is not configured with the rua (Reporting URI for Aggregate Reports) tag, the domain owner misses out on critical feedback regarding the domain's email authentication performance. Aggregate reports are essential for monitoring how a domain's DMARC policy is applied across various mail servers and whether legitimate or malicious emails are being sent on behalf of the domain. Without this reporting, domain administrators have no visibility into how their DMARC policy is being enforced, which hinders their ability to detect potential spoofing or authentication issues.
Recommendation
We recommend configuring the rua tag in the DMARC record to receive aggregate reports from mail servers. This tag should point to a reliable email address or monitoring service capable of handling DMARC aggregate reports, such as rua=mailto:dmarc-reports@example.com. These reports provide valuable insights into how email from the domain is being treated by receiving mail servers, highlighting potential authentication issues and attempts to spoof the domain. Regularly reviewing these reports will help ensure the DMARC policy is properly enforced and that any email authentication failures are addressed in a timely manner.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
_dmarc.wanderwunderwelt.ch | TXT | Text record | "v=DMARC1; p=quarantine;" |
Vulnerability description
We found that the DMARC record for the domain is not configured with ruf tag. A missing ruf (forensic reporting) tag in a DMARC record indicates that the domain owner has not enabled the collection of detailed failure reports. Forensic reports provide valuable insights into specific instances where emails fail DMARC authentication. Without the ruf tag, the domain administrator loses the ability to receive and analyze these reports, making it difficult to investigate individual email failures or identify targeted phishing or spoofing attacks that may be exploiting weaknesses in the email authentication setup.
Recommendation
We recommend configuring the ruf tag in the DMARC record. This tag specifies where forensic reports should be sent, providing the domain owner with detailed data on DMARC validation failures. Forensic reports allow administrators to analyze why certain emails failed authentication, making it easier to fine-tune DMARC policies or address potential vulnerabilities. Ensure that the ruf email address belongs to a secure and trusted location capable of handling sensitive email data.
Evidence
DKIM selector | Key type | Key size | Value |
---|---|---|---|
rsa | 1296 | "v=DKIM1; k=rsa; t=y; p=MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDzUkIN15VoQsCHTDAPoV38IQDb39mduiJOQc6gH8lWPeRQNSZUc03VZUwq/p34zd98F3AiXSNi+R445zQakPHSZDmIAx96IJvRiZg9AYnVCDKu39CnghMsH/G/D6GT5+7npwBZNl6/SD4/cJcS5fi64Ygk9lfoiqdU1UEjncfPMQIDAQAB" |
Vulnerability description
We found that the DKIM record uses common selectors. The use of common DKIM selectors such as default, test, dkim, or mail may indicate a lack of proper customization or key management. Attackers often target domains using such selectors because they suggest that the domain is relying on default configurations, which could be less secure and easier to exploit. This can increase the risk of DKIM key exposure or misuse.
Recommendation
We recommend using unique, customized selectors for each DKIM key to make it more difficult for attackers to predict and target the domain's DKIM records. Regularly rotate selectors and associated keys to further strengthen the security of your domain's email authentication infrastructure.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
wanderwunderwelt.ch | A | IPv4 address | 213.239.221.71 |
wanderwunderwelt.ch | NS | Name server | ns1.hoststar.hosting |
wanderwunderwelt.ch | NS | Name server | ns2.hoststar.hosting |
wanderwunderwelt.ch | MX | Mail server | 10 mail.wanderwunderwelt.ch |
wanderwunderwelt.ch | SOA | Start of Authority | ns1.hoststar.hosting. hostmaster.wanderwunderwelt.ch. 2025011601 10800 3600 1209600 3600 |
wanderwunderwelt.ch | SPF | Sender Policy Framework | "v=spf1 a mx ~all" |
_dmarc.wanderwunderwelt.ch | TXT | Text record | "v=DMARC1; p=quarantine;" |
Recommendation
We recommend reviewing all DNS records associated with the domain and identifying and removing unused or obsolete records.
Vulnerability description
OS detection couldn't determine the operating system.
Recommendation
Vulnerability checks are skipped for ports that redirect to another port. We recommend scanning the redirected port directly.
Evidence
DKIM selector | Key type | Key size | Value |
---|---|---|---|
rsa | 1296 | "v=DKIM1; k=rsa; t=y; p=MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDzUkIN15VoQsCHTDAPoV38IQDb39mduiJOQc6gH8lWPeRQNSZUc03VZUwq/p34zd98F3AiXSNi+R445zQakPHSZDmIAx96IJvRiZg9AYnVCDKu39CnghMsH/G/D6GT5+7npwBZNl6/SD4/cJcS5fi64Ygk9lfoiqdU1UEjncfPMQIDAQAB" |